Computer Vision

Edit By Dr. KKawla Husseín

Lecture 3 \& 4
Linear filters and Edge Detection

- Proposition 1. The primary task of early vision is to deliver a small set of useful measurements about each observable location in the plenoptic function.
- Proposition 2. The elemental operations of early vision involve the measurement of local change along various directions within the plenoptic function.
- Goal: to transform the image into other representations (rather than pixel values) that makes scene information more explicit

What we think we see

What we really see

RECEPTIVE FIELDS OF SINGLE NEURONES IN THE CAT'S STRIATE CORTEX

By D. H. HUBEL* and T. N. WIESEL*
From the Wilmer Institute, The Johns Hopkins Hospital and University, Baltimore, Maryland, U.S.A.

Receptive field of a cell in the cat's cortex

Responses to an oriented bar

Outline

- Linear filtering
- Fourier Transform

Filtering

We want to remove unwanted sources of variation, and keep the information relevant for whatever task we need to solve

Linear filtering

For a linear system, each output is a linear combination of all the input values:

$$
f[m, n]=\sum_{k, l} h[m, n, k, l] g[k, l]
$$

In matrix form:

$$
f=H g
$$

Linear filtering

In vision, many times, we are interested in operations that are spatially invariant. For a linear spatially invariant system:

$$
f[m, n] \quad h \quad g \quad h\left[\begin{array}{lll}
m & k, n & l] g[k, l]
\end{array}\right.
$$

Linear filtering

Output?

Linear filtering

For a linear spatially invariant system

Borders

From Szeliski, Computer Vision, 2010

$$
121-0
$$

Impulse

$$
f[m, n]=I \otimes g=\sum_{k, l} h[m-k, n-l] g[k, l]
$$

Shifts

$$
f[m, n] \quad I \quad g \quad h\left[\begin{array}{lll}
m, l
\end{array} \quad k, n \quad l\right] g[k, l]
$$

$g[m, n]$

$\mathrm{f}[\mathrm{m}, \mathrm{n}]$

Image rotation

$\mathrm{g}[\mathrm{m}, \mathrm{n}]$

$\mathrm{f}[\mathrm{m}, \mathrm{n}]$

It is linear, but not a spatially invariant operation. There is not convolution.

Rectangular filter

$g[m, n]$

$\mathrm{f}[\mathrm{m}, \mathrm{n}]$

Rectangular filter

$\mathrm{g}[\mathrm{m}, \mathrm{n}]$

$\mathrm{f}[\mathrm{m}, \mathrm{n}]$

Rectangular filter

$\mathrm{g}[\mathrm{m}, \mathrm{n}]$

$\mathrm{f}[\mathrm{m}, \mathrm{n}]$

Sharpening

original

Sharpened original

Sharpening example

filter

-0.3
result

accentuated; constant
areas are left untouched).

Sharpening

before

after

A taxonomy of useful filters

- Impulse, Shifts,
- Blur
- Rectangular blur (see artifacts)
- Gaussian
- Bilateral exponential
- Asymmetrical filter: motion blur
- Edges
- [-1 1]
- Derivative filter
- Derivative of a gaussian
- Oriented filters
- Gabor filter
- Quadrature filters: phase and magnitude.
- Elongated edges: filling gaps...

Linear blur occurs under many natural situations

This is not a Gaussian K̉ernel...

Linear blur occurs under many natural situations

Linear blur occurs under many natural situations

Linear blur occurs under many natural situations

dining room

Gaussian filter

$$
G(x, y ; \sigma)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}}
$$

Gaussian filter

Some desirable properties for a

blur kernel

- Positivity: $h(m)>=0$
- Symmetry: $h(m)=h(-m)$
- Unimodality: $h(m)>=h(m+1)$ for $m>=0$
- Normalized: $\Sigma h(m)=1$
- Equal contribution: $\Sigma \mathrm{h}(2 \mathrm{~m})=\Sigma \mathrm{h}(2 \mathrm{~m}+1)$

Some kernels that verify this are:
[$1 / 21 / 2]$
$[1 / 41 / 21 / 4]$

DERTVAT-VES
D)IEIRIVAJIVIXS

$$
\begin{gathered}
\lceil-11] \\
\frac{\partial \mathbf{I}}{\partial x} \simeq \underset{\mathbf{I}(x, y)-\mathbf{I}(x-1, y)}{ }
\end{gathered}
$$

$g[m, n]$

f[m,n]

$\left[\begin{array}{ll}-1 & 1\end{array}\right]^{\top}$

$g[m, n]$

f[m,n]

Differential Geometry Descriptors

I(x,y)

Scale-Space Theory in Computer Vision

Finding edges in the image

Image gradient:

$$
\nabla \mathbf{I}=\left(\frac{\partial \mathbf{I}}{\partial x}, \frac{\partial \mathbf{I}}{\partial y}\right)
$$

Approximation image derivative:

$$
\frac{\partial \mathbf{I}}{\partial x} \simeq \mathbf{I}(x, y)-\mathbf{I}(x-1, y)
$$

Edge strength

$$
E(x, y)=|\nabla \mathbf{I}(x, y)|
$$

Edge orientation:

$$
\theta(x, y)=\angle \nabla \mathbf{I}=\arctan \frac{\partial \mathbf{I} / \partial y}{\partial \mathbf{I} / \partial x}
$$

Edge normal:

$$
\mathbf{n}=\frac{\nabla \mathbf{I}}{|\nabla \mathbf{I}|}
$$

Differential Geometry Descriptors

 I(x, y)If we think of the image as a continuous function

Image gradient:

$$
I \frac{I(x, y)}{x}, \frac{I(x, y)}{y}
$$

Directional gradient:
$|u|=1 \quad u^{T} I \cos \frac{I(x, y)}{x} \sin \frac{I(x, y)}{y}$
Laplacian:

$$
{ }^{2} I \frac{{ }^{2} I(x, y)}{x^{2}} \frac{{ }^{2} I(x, y)}{y^{2}}
$$

Gaussian derivative

$$
\begin{aligned}
& g(x, y) \frac{1}{22^{2}} e^{\frac{x^{2} y^{2}}{2^{2}}} \\
& \frac{g(x, y)}{x} \frac{x}{2{ }^{4}} e^{\frac{x^{2} y^{2}}{2^{2}}}
\end{aligned}
$$

$g_{x}(x, y) \quad \frac{g(x, y)}{x} \quad \frac{x}{2^{4}} e^{\frac{x^{2} y^{2}}{2^{2}}}$

$$
g_{y}(x, y) \frac{g(x, y)}{x} \quad \frac{x}{2{ }^{4}} e^{\frac{x^{2} y^{2}}{2^{2}}}
$$

The smoothed directional gradient is a linear combination of two kernels

$$
u^{T} \quad g \quad I \quad \cos \quad g_{x}(x, y) \quad \sin \quad g_{y}(x, y) \quad I(x, y)
$$

Any orientation can be computed as a linear combination of two filtered images $\cos \quad g_{x}(x, y) \quad I(x, y) \quad \sin \quad g_{y}(x, y) \quad I(x, y)$

Laplacian

$$
\begin{aligned}
& g(x, y) \frac{1}{2^{2}} e^{\frac{x^{2} y^{2}}{2^{2}}} \\
& { }^{2} I \quad g \quad \frac{{ }^{2} I(x, y)}{x^{2}} \quad \frac{{ }^{2} I(x, y)}{y^{2}} \quad g(x, y) \\
& { }^{2} I \quad g \quad I \quad{ }^{2} g \\
& { }^{2} g(x, y) \quad \frac{x^{2} \quad y^{2}}{4} \quad \frac{2}{2} g(x, y)
\end{aligned}
$$

Laplacian

Outline

- Linear filtering
- Fourier Transform

Linear image transformations

- In analyzing images, it's often useful to make a change of basis.

Transformed image

Self-inverting transforms

$$
\vec{F}=\overrightarrow{U f} \Longleftrightarrow \vec{f}=U^{-1} \vec{F}
$$

Same basis functions are used for the inverse transform

$$
\begin{aligned}
\vec{f} & =U^{-1} \vec{F} \\
& =U^{+} \vec{F}
\end{aligned}
$$

U transpose and complex conjugate

An example of such a transform: the Discrete Fourier transform

Forward transform

$$
F[m, n] \quad \begin{gathered}
M 1 N 1 \\
k 0 l 0
\end{gathered}
$$

Inverse transform

$$
f[k, l] \frac{1}{M N}_{k 0 l 0}^{M 1 N 1} F[m, n] e^{i \frac{k m}{M} \frac{\ln }{N}}
$$

Fourier transform visualization

color key

Fourier transform matrix

$$
F[m, n]=\sum_{k=0}^{M-1 N-1} \sum_{l=0}^{N} f[k, l] e^{-\pi i\left(\frac{k m}{M}+\frac{\mathrm{ln}}{N}\right)}
$$

Why is the Fourier domain particularly useful?

- Linear, space invariant operations are just diagonal operations in the frequency domain.
- le, linear convolution is multiplication in the frequency domain.

Fourier transform of convolution

Consider a (circular) convolution of g and h

$$
f=g \otimes h
$$

In the transform domain, this just modulates the transform amplitudes

$$
\begin{aligned}
F[m, n] & =D F T(g \otimes h) \\
& =G[m, n] H[m, n]
\end{aligned}
$$

Analysis of a simple sharpening filter

$$
\begin{aligned}
F[m] & =\sum_{k=0}^{M-1} f[k] e^{-\pi i\left(\frac{k m}{M}\right)} 1.0 \\
& =2-\frac{1}{3}\left(1+2 \cos \left(\frac{\pi m}{M}\right)\right)
\end{aligned}
$$

Some important Fourier Transforms

Some important Fourier Transforms

The Fourier Transform of some important images

How to interpret a Fourier Spectrum

Vertical orientation

Low spatial frequencies

High
spatial
frequencies
Log power spectrum

Fourier Amplitude Spectrum

Fourier transform magnitude

Masking out the fundamental and harmonics from periodic pillars

Range $[0,3.29 \mathrm{e}+005]$
Dims $[256,256]$

Range $[0.000551,297]$

Phase and Magnitude

- Curious fact
- all natural images have about the same magnitude transform
- hence, phase seems to matter, but magnitude largely doesn't
- Demonstration
- Take two pictures, swap the phase transforms, compute the inverse - what does the result look like?

This is the magnitude transform of the cheetah pic

This is the phase
transform of the cheetah pic

This is the magnitude transform of the zebra pic

This is the phase
transform of the zebra pic

What is a good representation for image analysis?

- Fourier transform domain tells you "what" (textural properties), but not "where".
- Pixel domain representation tells you "where" (pixel location), but not "what".
- Want an image representation that gives you a local description of image eventswhat is happening where.

