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• Proposition 1. The primary task of early vision is to deliver a small set of useful 
measurements about each observable location in the plenoptic function.

• Proposition 2. The elemental operations of early vision involve the measurement 
of local change along various directions within the plenoptic function.

• Goal: to transform the image into other representations (rather than pixel values) 
that makes scene information more explicit

Cavanagh, Perception 95
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Some	visual	areas…

From M. Lewicky
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Receptive	field
of	a	cell	in	the	cat’s	cortex Responses	to	an	oriented	bar
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Outline
• Linear	filtering
• Fourier	Transform
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Filtering
g [m,n] f [m,n]

We want to remove unwanted sources of variation, and keep the 
information relevant for whatever task we need to solve
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Linear	filtering
g [m,n] f [m,n]

€ 

f [m,n] = h[m,n,k, l]g[k,l]
k,l
∑

For a linear system, each output is a linear combination of all the input values:

f = H g

=

In matrix form:
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Linear	filtering
g [m,n] f [m,n]

In vision, many times, we are interested in operations that are spatially invariant.
For a linear spatially invariant system:

=

f [m,n] h g h[m k,n l]g[k,l]
k,l
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Linear	filtering
f [m,n] h g h[m k,n l]g[k,l]

k,l

g [m]

0 1 2

h [m]

2

-1-1

0 1 2 3

2 2 2 2

1 1 10 0

f [m 0] h[ k]g[k]
k

Linear system: Input:

Output?

0 1 2h [-k]

2

-1 -1

f [m=0]=-2

0 1 2
h [1-k]

2

-1 -1

f [m 1] h[1 k]g[k]
k f [m=1]=-4

f [m 2] h[2 k]g[k]
k

f [m=2]=0
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Linear	filtering
g [m,n] f [m,n]

For a linear spatially invariant system

€ 

f [m,n] = I ⊗ g = h[m − k,n − l]g[k,l]
k,l
∑

€ 

⊗
-1 2 -1

-1 2 -1

-1 2 -1

g[m,n]
h[m,n] f[m,n]

=

111 115 113 111 112 111 112 111

135 138 137 139 145 146 149 147

163 168 188 196 206 202 206 207

180 184 206 219 202 200 195 193

189 193 214 216 104 79 83 77

191 201 217 220 103 59 60 68

195 205 216 222 113 68 69 83

199 203 223 228 108 68 71 77

m=0  1  2  …
? ? ? ? ? ? ? ?

? -5 9 -9 21 -12 10 ?

? -29 18 24 4 -7 5 ?

? -50 40 142 -88 -34 10 ?

? -41 41 264 -175 -71 0 ?

? -24 37 349 -224 -120 -10 ?

? -23 33 360 -217 -134 -23 ?

? ? ? ? ? ? ? ?
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Borders

From Szeliski, Computer Vision, 2010
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Impulse

€ 

⊗

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

€ 

f [m,n] = I ⊗ g = h[m − k,n − l]g[k,l]
k,l
∑

g[m,n]

h[m,n]

f[m,n]

=
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Shifts

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

f [m,n] I g h[m k,n l]g[k,l]
k,l

g[m,n]

h[m,n]

f[m,n]

=

2pixels
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Image	rotation

g[m,n]

h[m,n]

=?

f[m,n]

It is linear, but not a spatially invariant operation. There is not convolution.
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Rectangular	filter

€ 

⊗

g[m,n]

h[m,n]

=

f[m,n]

15



Rectangular	filter

€ 

⊗

g[m,n]

h[m,n]

=

f[m,n]
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Rectangular	filter

€ 

⊗

g[m,n]

h[m,n]

=

f[m,n]
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Sharpening	

original

0

2.0

0

0.33

Sharpened 
original

=
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Sharpening	example

co
ef

fic
ie

nt

-0.3
original

8

Sharpened
(differences are

accentuated;  constant
areas are left untouched).

11.2
1.7

-2.5

8

filter result

* =
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Sharpening

before after
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A	taxonomy	of	useful	filters
• Impulse,	Shifts,	

• Blur

– Rectangular	blur	(see	artifacts)

– Gaussian
– Bilateral	exponential

– Asymmetrical	filter:	motion	blur

• Edges

– [-1	1]

– Derivative	filter	
– Derivative	of	a	gaussian

– Oriented	filters
– Gabor	filter

– Quadrature filters:	phase	and	magnitude.

– Elongated	edges:	filling	gaps…
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Linear	blur	occurs	under	many	natural	situations

This	is	not	a	Gaussian	kernel...

(from	Fergus	et	al,	2007)

23



24

Linear	blur	occurs	under	many	natural	situations
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Linear	blur	occurs	under	many	natural	situations
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Linear	blur	occurs	under	many	natural	situations



Gaussian	filter

s=1

s=2

s=4
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Gaussian	filter

Dali
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Some	desirable	properties	for	a	
blur	kernel

• Positivity:								h(m)	>=	0
• Symmetry:						h(m)	=	h(-m)
• Unimodality:		h(m)	>=	h(m+1)		for	m	>=	0	
• Normalized:			S h(m)	=	1
• Equal	contribution:	S h(2m)	=	S h(2m+1)

Some	kernels	that	verify	this	are:	
[½	½]
[¼	½	¼]
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[-1	1]

g[m,n]

h[m,n]

=

f[m,n]

[-1, 1]
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[-1	1]T

g[m,n]

h[m,n]

=

f[m,n]

[-1, 1]T
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Differential	Geometry	Descriptors
I(x,y)
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Finding	edges	in	the	image
Image gradient:

Approximation image derivative:

Edge strength

Edge orientation:

Edge normal:
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I(x,y) If	we	think	of	the	image	as	a	continuous	function

I
I(x,y)
x
,
I(x,y)
y

Image	gradient:

Directional	gradient:

uT I cos
I(x,y)
x

sin
I(x,y)
y

|u|=1

Laplacian:

Differential	Geometry	Descriptors

2I
2I(x,y)
x2

2I(x,y)
y2
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Gaussian	derivative

g(x,y)
1

2 2 e
x 2 y 2

2 2

g(x,y)
x

x
2 4 e

x 2 y 2

2 2
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I(x,y)
x

g(x,y)

g(x,y)
1

2 2 e
x 2 y 2

2 2

I(x,y) g(x,y)
x

g(x,y)
x

x
2 4 e

x 2 y 2

2 2

I(x,y)
g(x,y)
x
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gx(x,y)
g(x,y)
x

x
2 4 e

x 2 y 2

2 2 gy(x,y)
g(x,y)
x

x
2 4 e

x 2 y 2

2 2

uT g I cos gx(x,y) sin gy(x,y) I(x,y)

cos gx (x,y) I(x,y) sin gy(x,y) I(x,y)
Any	orientation	can	be	computed	as	a	linear	combination	of	two	filtered	images

The	smoothed	directional	gradient	is	a	linear	combination	of	two	kernels

=	cos(a) +sin(a) =

Steereability	of	gaussian	derivatives,	Freeman	&	Adelson	921/9/21 Dr.	Khawla	Hussein	 38



Laplacian

2I g
2I(x,y)
x2

2I(x,y)
y2

g(x,y)

2I g I 2g

g(x,y)
1

2 2 e
x 2 y 2

2 2

2g(x,y)
x2 y2

4
2
2 g(x,y)
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Laplacian
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Outline
• Linear	filtering
• Fourier	Transform
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Linear	image	transformations

• In	analyzing	images,	it’s often	useful	to	
make	a	change	of	basis.

Fourier transform, or
Wavelet transform, or

Steerable pyramid transform

Vectorized imageTransformed image

=
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Self-inverting	transforms

Same basis functions are used for the inverse transform

U transpose and complex conjugate

43



An	example	of	such	a	transform:		
the	Discrete	Fourier	transform

f [k,l] 1
MN

F[m,n]e
i km
M

ln
N

l 0

N 1

k 0

M 1

Inverse transform

F[m,n] f [k,l]e
i km
M

ln
N

l 0

N 1

k 0

M 1
Forward transform
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Fourier	transform	visualization

real

imaginary

input signalFourier transform matrixcolor key

1

j

€ 

F[m,n] = f [k, l]e
−πi km

M
+
ln
N

 

 
 

 

 
 

l= 0

N−1

∑
k= 0

M −1

∑



Why	is	the	Fourier	domain	
particularly	useful?

• Linear,	space	invariant	operations	are	just	
diagonal	operations	in	the	frequency	
domain.

• Ie,	linear	convolution	is	multiplication	in	
the	frequency	domain.
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Fourier	transform	of	convolution

Consider	a	(circular)	convolution	of	g	and	h

In	the	transform	domain,	this	just	modulates	the	
transform	amplitudes
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Analysis	of	a	simple	sharpening	filter

original
0

2.0

0

0.33

sharpened	

high-pass	
filter

0

1.0

2.3
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Some	important	Fourier	
Transforms

Im
ag

e
M

ag
ni

tu
de

 F
T
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Some	important	Fourier	
Transforms

Im
ag

e
M

ag
ni

tu
de

 F
T
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The	Fourier	Transform	of	some	
important	images

Im
ag

e
Lo

g(
1+

M
ag

ni
tu

de
 F

T)
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How	to	interpret	a	Fourier	Spectrum

Horizontal
orientation

Vertical	orientation

45	deg.

0 fmax

0

fx	in	cycles/image

Low spatial frequencies

High 
spatial 
frequencies

Log	power	spectrum
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Fourier	Amplitude	Spectrum

A B C

1 2 3

fx(cycles/image pixel size) fx(cycles/image pixel size) fx(cycles/image pixel size)53



Fourier	transform	magnitude
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Masking	out	the	fundamental	
and	harmonics	from	periodic	

pillars
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Phase	and	Magnitude

• Curious	fact
– all	natural	images	have	about	the	same	magnitude	transform
– hence,	phase seems	to	matter,	but	magnitude	largely	doesn’t

• Demonstration
– Take	two	pictures,	swap	the	phase	transforms,	compute	the	

inverse	- what	does	the	result	look	like?
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This	is	the	
magnitude	
transform	of	
the	cheetah	
pic
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This	is	the	
phase	
transform	of	
the	cheetah	
pic
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This	is	the	
magnitude	
transform	of	
the	zebra	pic
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This	is	the	
phase	
transform	of	
the	zebra	pic
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What	is	a	good	representation	
for	image	analysis?

• Fourier	transform	domain	tells	you	“what”
(textural	properties),	but	not	“where”.

• Pixel	domain	representation	tells	you	
“where” (pixel	location),	but	not	“what”.

• Want	an	image	representation	that	gives	
you	a	local	description	of	image	events—
what	is	happening	where.
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